作者单位
摘要
西北工业大学物理科学与技术学院,光场调控与信息感知工业和信息化部重点实验室,陕西省光信息技术重点实验室,陕西 西安 710129
全金属超表面 几何相位 电磁隐身 高效率 all-metal metasurface geometric phase electromagnetic stealth high efficiency 
光电工程
2023, 50(9): 230119
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
The conversion-efficiency for second-harmonic (SH) in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica, and pulse pump lasers with high peak power are widely employed. Here, we propose a simple strategy to efficiently realize the broadband and continuous wave (CW) pumped SH, by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter. In the experiment, high efficiency up to 0.08 %W-1mm-1 is reached for a C-band pump laser. The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser, but also multi-frequencies mixing supported by three CW light sources. Moreover, broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth. The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes, development of quasi-monochromatic or broadband CW light sources at new wavelength regions.
nonlinear optics second-harmonic generation continuous wave pump high efficiency multi-frequencies mixing broad spectra microfibers gallium selenide 
Opto-Electronic Advances
2023, 6(9): 230012
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures. Here, we report an in-fiber photoelectric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating (TFBG) for photoelectric and electric-induced thermo-optic conversions. The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer. The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W, allowing the spectrum analysis by real-time monitoring of photocurrent evolution. Based on the thermal-optic effect of electrical injection, the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TFBG, with a high sensitivity approaching 2.167×104 nm/A2. The in-fiber photoelectric device, therefore as a powerful tool, could be widely available as off-the-shelf product for photodetection, spectrometer and current sensor.
tilted fiber grating photoelectric device graphene photoelectric conversion thermo-optic switching 
Opto-Electronic Science
2023, 2(6): 230012
Author Affiliations
Abstract
1 Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
2 Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
3 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
4 School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics. Herein, we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors. A solvent-free WS2 film deposited on paper favors an effective electron-hole separation and hampers recombination. The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet (365 nm) to near-infrared (940 nm). Their responsivity value reaches up to ~270 mA W?1 at 35 V under a power density of 35 mW cm?2. A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS2 photodetector. Furthermore, we have built a spectrometer using such a paper-based WS2 device as the photodetecting component to illustrate its potential application. The present work could promote the development of cost-effective disposable photodetection devices.
paper electronics photodetector van der Waals materials solvent-free deposition tungsten disulfide 
Opto-Electronic Advances
2023, 6(3): 220101
Author Affiliations
Abstract
1 Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
We propose a chip-integratable cylindrical vector (CV) beam generator by integrating six plasmonic split ring resonators (SRRs) on a planar photonic crystal (PPC) cavity. The employed PPC cavity is formed by cutting six adjacent air holes in the PPC center, which could generate a CV beam with azimuthally symmetric polarizations. By further integrating six SRRs on the structure defects of the PPC cavity, the polarizations of the CV beam could be tailored by controlling the opening angles of the SRRs, e.g., from azimuthal to radial symmetry. The mechanism is governed by the coupling between the resonance modes in SRRs and PPC cavity, which modifies the far-field radiation of the resonance mode of the PPC cavity with the SRR as the nano-antenna. The integration of SRRs also increases the coupling of the generated CV beam with the free-space optics, such as an objective lens, promising its further applications in optical communication, optical tweezer, imaging, etc.
vector beams photonic crystal plasmonics integrated photonics 
Chinese Optics Letters
2023, 21(3): 033601
Author Affiliations
Abstract
1 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 e-mail: bqjiang@nwpu.edu.cn
3 e-mail: xuetaogan@nwpu.edu.cn
We created an all-fiber solution for fast, continuous, and controllable tuning of Fano-like resonance. By embedding a graphene-coated fiber Bragg grating into one arm of a Mach–Zehnder interferometer, the narrow Bragg resonance interacts with a broad interference spectrum, forming a sharp asymmetric Fano-like resonance line shape. With the application of an electrical voltage over the graphene layer, the generated Joule heating shifts the Bragg resonance and consequently tunes the asymmetric Fano-like resonance line shape to a symmetric dip or electromagnetically induced transparency-like peak. Further, by exploiting two modulated states with reversed Fano-like resonance line shapes, an optical switch can operate with an extinction ratio of 9 dB. The well-engineered Fano-like resonance in an all-fiber structure opens up new horizons for applications of fiber gratings in optical signal processing, slow-light lasing, and fiber sensing.
Photonics Research
2022, 10(5): 05001238
Author Affiliations
Abstract
1 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
2 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
3 Shanghai Energy Internet Research Institute of State Grid, 251 Libing Road, Pudong New Area, Shanghai 201210, China
The realization of high-Q resonances in a silicon metasurface with various broken-symmetry blocks is reported. Theoretical analysis reveals that the sharp resonances in the metasurfaces originate from symmetry-protected bound in the continuum (BIC) and the magnetic dipole dominates these peculiar states. A smaller size of the defect in the broken-symmetry block gives rise to the resonance with a larger Q factor. Importantly, this relationship can be tuned by changing the structural parameter, resulting from the modulation of the topological configuration of BICs. Consequently, a Q factor of more than 3,000 can be easily achieved by optimizing dimensions of the nanostructure. At this sharp resonance, the intensity of the third harmonic generation signal in the patterned structure can be 368 times larger than that of the flat silicon film. The proposed strategy and underlying theory can open up new avenues to realize ultrasharp resonances, which may promote the development of the potential meta-devices for nonlinearity, lasing action, and sensing.
all-dielectric metasurface bound states in the continuum optical nonlinearity topological configuration 
Opto-Electronic Advances
2021, 4(6): 06200030
甘雪涛 1,2,3,*赵建林 1,2,3,**
作者单位
摘要
1 西北工业大学物理科学与技术学院, 陕西 西安 710129
2 西北工业大学陕西省光信息技术重点实验室, 陕西 西安 710129
3 西北工业大学光场调控与信息感知工业和信息化部重点实验室, 陕西 西安 710129
光学腔借助其特殊的共振线型,成为激光、精密检测、光传感、光开关等技术中尤为重要的光波器件。对已报道的光学腔中几种不同共振线型(洛伦兹型尖峰、洛伦兹型凹谷、不对称Fano型等)进行评述,并分析形成机制。最后,以硅基微环腔为例,提出调控这些共振线型的方法和相关器件结构。
光学器件 光学腔 共振线型 微环腔 
光学学报
2021, 41(8): 0823007
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi’an 710119, China
3 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
4 Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
5 e-mail: xuetaogan@nwpu.edu.cn
6 e-mail: fjxiao@nwpu.edu.cn
7 e-mail: jlzhao@nwpu.edu.cn
Plasmonic particle-on-film nanocavities, supporting gap modes with ultra-small volume, provide a great solution to boost light–matter interactions at the nanoscale. In this work, we report on the photoluminescence (PL) enhancement of monolayer MoS2 using high order modes of an Au nanosphere dimer-on-film nanocavity (DoFN). The high order plasmon modes, consisting of two bonding quadrupoles in the dimer and their images in the Au film, are revealed by combining the polarization-resolved scattering spectra with the numerical simulations. Further integrating the monolayer MoS2 into the DoFN, these high order modes are used to enhance PL intensity through simultaneously boosting the absorption and emission processes, producing a 1350-fold enhancement factor. It opens an avenue to enhance the light–matter interaction with high order plasmon modes and may find applications in future optoelectronics and nanophotonics devices.
Photonics Research
2021, 9(4): 04000501
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 State Key Laboratory of Optoelectronic Materials & Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
3 Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076, Finland
4 QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
5 e-mail: jlzhao@nwpu.edu.cn
We report an indium phosphide nanowire (NW)-induced cavity in a silicon planar photonic crystal (PPC) waveguide to improve the light–NW coupling. The integration of NW shifts the transmission band of the PPC waveguide into the mode gap of the bare waveguide, which gives rise to a microcavity located on the NW section. Resonant modes with Q factors exceeding 103 are obtained. Leveraging on the high density of the electric field in the microcavity, the light–NW interaction is enhanced strongly for efficient nonlinear frequency conversion. Second-harmonic generation and sum-frequency generation in the NW are realized with a continuous-wave pump laser in a power level of tens of microwatts, showing a cavity-enhancement factor of 112. The hybrid integration structure of NW-PPC waveguide and the self-formed microcavity not only opens a simple strategy to effectively enhance light–NW interactions, but also provides a compact platform to construct NW-based on-chip active devices.
Photonics Research
2020, 8(11): 11001734

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!